Disentangling a cryptic species complex and defining new species within the *Eumerus minotaurus* group (Diptera: Syrphidae), based on integrative taxonomy and Aegean palaeogeography

Antonia Chroni1,4,5, Ana Grković2, Jelena Ačanski3, Ante Vujić2, Snežana Radenković2, Nevena Veličković2, Mihajla Djan2, Theodora Petanidou1

1 University of the Aegean, Department of Geography, University Hill, 81100, Mytilene, Greece
2 University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
3 Laboratory for Biosystems Research, BioSense Institute – Research Institute for Information Technologies in Biosystems, University of Novi Sad, Dr. Zorana Dindića 1, 21000, Novi Sad, Serbia
4 Institute for Genomics and Evolutionary Medicine; Department of Biology, Temple University, Philadelphia, PA 19122, USA
1 E-mail: tonichr3@gmail.com

Keywords: Aegean, DNA sequences, hoverflies, mid-Aegean Trench, wing geometric morphometry

Abstract

This study provides an overview of the *Eumerus minotaurus* taxon group, diagnosing a new species, *E. anatolicus* Grković, Vujić and Radenković sp. n. (Muğla, Turkey), and unraveling three cryptic species within *E. minotaurus*: *E. karyates* Chroni, Grković and Vujić sp. n. (Peloponese, Greece), *E. minotaurus* Claussen and Lucas, 1988 (Crete and Karpathos, Greece) and *E. phaeacus* Chroni, Grković and Vujić sp. n. (Corfu and Mt Olympus, Greece; Mt Rumija, Montenegro). We applied an integrative taxonomic approach based on molecular, morphological and wing geometric morphometric data to corroborate and delimit cryptic species within the complex. In addition, we discuss the latent biogeographic patterns and speciation processes leading to configuration of the *E. minotaurus* group based on palaeogeographic evolution of the Aegean. Mitochondrial phylogeographic analysis suggested that speciation within the *E. minotaurus* group is attributable to formation of the mid-Aegean Trench and Messinian Salinity Crisis, and was integrated at the Pleistocene. We show that more accurate estimates of divergence times may be based on geological events rather than the standard arthropod mtDNA substitution rate.

Contents

Introduction .. 197
Material and methods ... 199
 Specimen collection and morphological analysis 199
 Molecular analyses .. 203
 Geometric morphometric analysis 206
Results .. 208
 Molecular analyses ... 208
 Geometric morphometric evidence 209
Discussion .. 211
 Taxonomic and molecular implications 212
 Mitochondrial dating, biogeographic history and divergence time estimates .. 213
Acknowledgments .. 215
References .. 215
Online supplementary information 220
Appendix .. 221

Introduction

Integrative taxonomy is a multisource approach that takes advantage of complementarity among disciplines and tends to gain ground more and more in species delimitation and diagnosis of cryptic diversity (Dayrat, 2005; Padial et al., 2010; Schlick-Steiner et al., 2010). Single-method approaches in taxonomic and systematic studies have many limitations, especially for diagnosis of cryptic species and, as a result, (two or more) distinct species are often erroneously classified (and hidden) under one species name (Bickford et al., 2007; Pfenninger and Schwenk, 2007). Cryptic species are morphologically indistinguishable but genetically distinct lineages, so a combination of molecular, biological and morphological approaches, as well as phylogeographic and population genetic analyses have been proposed (and are required) as a framework to diagnose and distinguish cryptic species (Pérez-Ponce de León and Nadler, 2010). Mitochondrial (DNA barcodes; Hebert et al., 2003) and nuclear molecular markers (e.g. 28S, Belshaw et al., 1998) have contributed to tally up the total species diversity, leading to the prosperity of integrative taxonomy (e.g.
hoverflies, Mengual et al., 2008) and the detection of new species (beetles, Soldati et al., 2014; butterflies, Kirichenko et al., 2015; cone snails, Puillandré et al., 2014; flies, Diaz et al., 2015) as well as cryptic species complexes (earthworms, Martinsson and Erséus, 2017; flies, Dias et al., 2016; Šašić et al., 2016; lizards, Rato et al., 2016; rotifers, Papakostas et al., 2016).

The hoverfly genus Eumerus Meigen, 1822 (Diptera: Syrphidae) accounts of its great diversity (256 species recorded worldwide, Pape and Thompson, 2015, of which 37 occur in southeastern Europe, Grković et al., 2017), yet we know little about its fauna (unknown total species number as e.g. new species are regularly described: Doczkal, 1996; Speight et al., 2013; Grković et al., 2015, 2017; Markov et al., 2016), habitat preferences (Speight, 2016), life cycle (often strictly connected to plant species, Arzone, 1971, 1973; Pérez-Bañón and Marcos-García, 1998; Speight, 2016) or foraging behaviour (pests of vegetables, Doczkal, 1996; Pérez-Bañón and Marcos-García, 1998; flower visitors, Petanidou et al., 2011; Speight, 2016). In addition, the nomenclatural history and the taxonomic statuses within the genus are complex and unclear, highlighting the need to revise the genus’ taxonomy. Considering the importance of hoverflies in ecosystems (as pollinators, predators of plant pests, herbivores, etc.; Rotheray and Gilbert, 2011), further ecological and biogeographic studies are needed; there might be more out there that we are missing which should be taken into account in, e.g. conservation outlines.

Heretofore, few studies have tackled unresolved problems of the genus Eumerus with DNA barcoding, let alone integrative taxonomy being employed. New species, some of them endemics, have been described over the past decade (Doczkal, 1996; Ricarte et al., 2012; Grković et al., 2015, 2017; Markov et al., 2016; van Steenis et al., 2017; Smit et al., 2017), and several taxon groups (hereafter named as ‘groups’) have been proposed within the genus (Chroni et al., 2017). The latter study suggested the configuration of the Eumerus minotaurus group with two related species: E. crassus Grković, Vujić and Radenković, 2015 (species range: Lesvos Island, Greece; originally identified as E. niehuiisi Doczkal, 1996, and treated as such in the respective publication; specimen EU37) and E. minotaurus Claussen and Lucas, 1988 (species range: Crete and Thessaly, Greece; and parts of the former Yugoslavia; Speight, 2016) (Figure 1A). Doczkal (1996) discussed this topic, and suggested an affinity for E. longicornis Loew, 1855 (species range requires confirmation, but probably: southern and central Germany, Slovakia, Hungary and the Mt. Caucasus; Speight, 2016), E. minotaurus, E. niehuiisi (species range: Corsica and Sardinia; Doczkal, 1996) and E. sibiricus Stackelberg, 1952 (species range: Siberia; drawn by Stackelberg, 1961; Doczkal, 1996; Figure 1B). Within the frame of this study, we considered all aforementioned species (Doczkal, 1996; Chroni et al., 2017) to belong to the E. minotaurus group (Figure 1C), and we studied the species and specimens (at our disposal) originating from southeastern Europe. We have employed an integrative approach that utilizes molecular, morphological and wing morphometric data (E. crassus and E. minotaurus) or morphological data alone due to unavailability of DNA sequences (E. longicornis). Our current analyses denoted a cryptic species complex within E. minotaurus and one new species within the E. minotaurus group. Cryptic diversity is frequently encountered among hoverflies, with examples described for the genera Chrysotoxum (Nedeljković et al., 2013, 2015), Merodon (M. aureus group, Šašić et al., 2016; M. avidus, Popović et al., 2015, Ačanski et al., 2016; M. nanus group, Vujić et al., 2014), Microdon (M. myrmicae, Bonelli et al., 2011) and Pipiza (Vujić et al., 2013).

The Aegean archipelago and its adjacent regions (Balkan Peninsula, Greek mainland and Anatolian coast) are well-known for their high diversity of both cryptic and endemic species (Poulakakis et al., 2015), as well as for the multiple and complex alterations that have occurred from the Miocene (23 Mya) through to the Holocene (0.0117 Mya to the present) (Poulakakis et al., 2015; Gkontas et al., 2016; Kougioumoutzis et al., 2017; Sfenthourakis and Triantis, 2017). Four major geological events in the Aegean region are considered liable for significant species dispersal barriers: (1) formation of the mid-Aegean Trench (MAT) in the middle Miocene (12-9 Mya), during which a sea interference separated eastern from central-western regions (Sfenthourakis and Triantis, 2017); (2) isolation of Crete from the Peloponnese (5.5-5 Mya) after the Messinian Salinity Crisis (MSC) in the late Miocene (5.96-5.33 Mya) when the Mediterranean Sea almost desiccated allowing every species to travel anywhere (5.96-5.33 Mya) when the Mediterranean Sea almost desiccated allowing every species to travel anywhere wanted; (3) extensive segregation and widening of the Aegean Sea and separation of the Karpathos–Kassos island group from Rhodos in the Pliocene (5-2 Mya); and (4) orogenetic and eustatic sea-level changes during the Pleistocene (2-0.0117 Mya) (Kougioumoutzis et al., 2017; Sfenthourakis and Triantis, 2017). A series of phenomena including geological (geotectonic forces) and climatic events (sea-level oscillations) as well as
human pressure (first evidence of human settlement in the Palaeolithic, ca. 130 000 years ago, Strasser et al., 2010), have shaped everything as known today, with the configuration or isolation of landmasses allowing or impeding the dispersal of organisms and thereby driving speciation or species extinction (Poulakakis et al., 2005; Parmakelis et al., 2006; Poulakakis and Sfenthourakis, 2008; Akin et al., 2010; Simaiakis et al., 2012; Gkontas et al., 2016; Sfenthourakis and Triantis, 2017).

The aims of our study were threefold: (a) to define and delimit cryptic species within *E. minotaurus* by integrating molecular markers (mtDNA and nDNA), subtle morphological characters and wing geometric morphometrics; (b) to provide an overview of the species within the *E. minotaurus* group and to explore the existence of new species within it; and (c) to investigate speciation processes and suggest a biogeographic pattern for the *E. minotaurus* group.

Material and methods

Specimen collection and morphological analysis

Our study relies on collections assembled by hand net between the years 2003 and 2016, and deposited in the entomological collections of the Faculty of Sciences of Novi Sad (FSUNS), the Melissotheca of the Aegean (University of the Aegean, Mytilene, Greece, MAegean) and the Finnish Museum of Natural History (Zoological Museum, Helsinki, Finland, MZH). The specimens of *E. anatolicus* sp. n. were collected by Malaise trap and belong to the Miroslav Barták collection (Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague). A total of 52 specimens from 19 species of *Eumerus*, representing 33 sampling localities, were used for the molecular analyses (Figure 2; Table 1; 15 specimens of representative *Eumerus* species and 37 of the *E. minotaurus* group. Sample sizes and provenances of the studied *E. minotaurus* group specimens used for morphological/molecular/wing morphometry analyses were, respectively (Figure 2): *E. crassus* (Greece: Chios, Evros, Lesvos, Mt Rhodope, Samos, Thassos; Turkey: Mt Bozdag; 40/4/10 specimens), *E. anatolicus* sp. n. (Turkey: Muğla; 7/-/- specimens), *E. karyates* sp. n. (Greece: Peloponnese; 8/8/9 specimens), *E. minotaurus* (Greece: Crete, Karpathos; 11/7/10 specimens) and *E. phaeacus* sp. n. (Greece: Corfu, Mt Olympus; Montenegro: Mt Rumija; 24/18/22 specimens). Additional material of representative *Eumerus* species from four countries was used in the molecular analyses (see Appendix for details). Furthermore, we examined two paratypes of *E. minotaurus* from the Zoological...
Table 1. List of the specimens used for the molecular analyses, their locality information, and GenBank accession numbers. GenBank accession numbers of sequences: newly-generated (this study) are in boldface; previously-generated are in normal text; and retrieved from GenBank are in italics. FSUNS: Faculty of Sciences of Novi Sad, Serbia. MAegean: The Melissotheque of the Aegean, University of the Aegean, Mytilene, Greece. MZH: Finnish Museum of Natural History, Zoological Museum, Helsinki, Finland.

<table>
<thead>
<tr>
<th>Sequence ID</th>
<th>Specimen voucher</th>
<th>3′-end fragment of COI</th>
<th>5′-end fragment of COI</th>
<th>28S</th>
<th>Species name</th>
<th>Species group</th>
<th>Species subgroup</th>
<th>Sex</th>
<th>Field data</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU10</td>
<td>FSUNS:G1147</td>
<td>KY865493</td>
<td>KY083349</td>
<td>none</td>
<td>Eumerus alpinus</td>
<td>none</td>
<td>E alpinus</td>
<td>F</td>
<td>Italy, Toscana, Mt Apuanee, near OrtoBotanico, 44.056359, 10.19884</td>
</tr>
<tr>
<td>EU132</td>
<td>FSUNS:60653</td>
<td>KY865499</td>
<td>KY083380</td>
<td>none</td>
<td>Eumerus strigatus (Fallen, 1817)</td>
<td>none</td>
<td>E strigatus</td>
<td>M</td>
<td>Germany, Unknown</td>
</tr>
<tr>
<td>EU135</td>
<td>FSUNS:G3018</td>
<td>KY865500</td>
<td>none</td>
<td>E. tricolor (Fabricius), 1798</td>
<td>E. tricolor</td>
<td>none</td>
<td>F</td>
<td>Italy, Baragazza, 44.13217, 11.19112, 09/06/2013</td>
<td></td>
</tr>
<tr>
<td>EU146</td>
<td>FSUNS (loan by Maegean):E078 7, UOTA_MEL02 6180</td>
<td>FSUNS:G3018</td>
<td>none</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Karpathos, Avlona, 35.7689, 27.1849, 2-4/05/2012</td>
<td></td>
</tr>
<tr>
<td>EU16</td>
<td>FSUNS:G0278</td>
<td>KY865494</td>
<td>KY865446</td>
<td>KY865545</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Mt Olympus, Ag. Paraskevi, kanjon, 39.8785, 22.5863, 17/05/2011</td>
</tr>
<tr>
<td>EU211</td>
<td>FSUNS:G0277</td>
<td>KY865503</td>
<td>KY865545</td>
<td>KY865550</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>F</td>
<td>Greece, Mt Olympus, Ag. Paraskevi, kanjon, 39.8785, 22.5863, 17/05/2011</td>
</tr>
<tr>
<td>EU212</td>
<td>FSUNS:G0269</td>
<td>KY865504</td>
<td>KY865454</td>
<td>none</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Montenegro, Mt Rumija, okosredine (deokajezeru, uz put), 42.11201, 19.21739, 02/05/2011</td>
</tr>
<tr>
<td>EU221</td>
<td>FSUNS:G0271</td>
<td>KY865505</td>
<td>KY865455</td>
<td>none</td>
<td>Eumerus sinitatus</td>
<td>E. minotaurus</td>
<td>Loew, 1855</td>
<td>M</td>
<td>Serbia, Fruska Gora, Glavica, 45.153999, 19.834681, 17/06/2011</td>
</tr>
<tr>
<td>EU300</td>
<td>FSUNS:06557</td>
<td>KY865510</td>
<td>KY865458</td>
<td>KY865549</td>
<td>Eumerus karyates</td>
<td>E. minotaurus</td>
<td>Choni, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>M</td>
</tr>
<tr>
<td>EU303</td>
<td>FSUNS:06728</td>
<td>KY865512</td>
<td>KY865460</td>
<td>KY865547</td>
<td>Eumerus minotaurus</td>
<td>E. minotaurus</td>
<td>Claussen & Lucas, 1988</td>
<td>E. minotaurus</td>
<td>M</td>
</tr>
<tr>
<td>EU320</td>
<td>FSUNS:06561</td>
<td>KY865513</td>
<td>KY083382</td>
<td>none</td>
<td>Eumerus sogdianus Stackelberg, 1952</td>
<td>E. strigatus</td>
<td>none</td>
<td>F</td>
<td>Greece, Peloponessse, Karyes2, 25km N from Sparti, 37.30416, 22.42106</td>
</tr>
<tr>
<td>EU406</td>
<td>FSUNS:E1333</td>
<td>KY865514</td>
<td>KY865461</td>
<td>none</td>
<td>Eumerus sulcitibius</td>
<td>E. sulcitibius</td>
<td>Rondani, 1868</td>
<td>E. sulcitibius</td>
<td>none</td>
</tr>
</tbody>
</table>
Table 1 continued

<table>
<thead>
<tr>
<th>Sequence ID</th>
<th>Specimen voucher</th>
<th>5' end fragment of COI</th>
<th>5' end fragment of COI</th>
<th>28S</th>
<th>Species name</th>
<th>Species group</th>
<th>Species subgroup</th>
<th>Sex</th>
<th>Field data</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU469</td>
<td>FSUNS:07982</td>
<td>KY865516</td>
<td>KX083351</td>
<td>none</td>
<td>Eumerus clavatus</td>
<td>E. clavatus</td>
<td>none</td>
<td>F</td>
<td>Turkey, Mt Davrak, ski center, 37.781694, 30.75871</td>
</tr>
<tr>
<td>EU499</td>
<td>FSUNS:GO290</td>
<td>KY865517</td>
<td>KY865463</td>
<td>none</td>
<td>Eumerus crassus</td>
<td>E. minotaurus</td>
<td>none</td>
<td>F</td>
<td>Greece, Samos, Nechori, 37.707965, 26.769917, 29/05/2014</td>
</tr>
<tr>
<td>EU73</td>
<td>FSUNS:GO292</td>
<td>KY865496</td>
<td>KX083373</td>
<td>none</td>
<td>Eumerus ornatus</td>
<td>E. ornatus</td>
<td>none</td>
<td>M</td>
<td>Serbia, Djerdap, 44.54104, 20/05/2014, 26/05/2014</td>
</tr>
<tr>
<td>EU75</td>
<td>FSUNS:GO992</td>
<td>KY865497</td>
<td>KY865448</td>
<td>none</td>
<td>Eumerus clavatus</td>
<td>E. basalis</td>
<td>none</td>
<td>M</td>
<td>Greece, Ikaria, near Hristos, 37.601523, 26.084755, 11/06/2014</td>
</tr>
<tr>
<td>EU99</td>
<td>FSUNS:G2219</td>
<td>KY865498</td>
<td>KY865449</td>
<td>none</td>
<td>Eumerus ornatus</td>
<td>E. ornatus</td>
<td>none</td>
<td>M</td>
<td>Montenegro, Boka Kotorska, Morinj Bay, 42.493934, 18.649814, 09/09/2014</td>
</tr>
<tr>
<td>GUN5</td>
<td>FSUNS:GUN5</td>
<td>KY865492</td>
<td>KX083393</td>
<td>KY865574</td>
<td>Megatrigon tabanoides</td>
<td>Outgroup</td>
<td>none</td>
<td>M</td>
<td>South Africa, Unknown</td>
</tr>
<tr>
<td>Y1711E</td>
<td>MZH:Y1711</td>
<td>KY865491</td>
<td>KY865444</td>
<td>KM224496</td>
<td>Platynochaetis setosus</td>
<td>Outgroup</td>
<td>none</td>
<td>M</td>
<td>France, Banyuls-sur-Mer, Pyrenees-Orientales, JardinsMediterraneen, 42.474414, 3.117728</td>
</tr>
<tr>
<td>TS240</td>
<td>FSUNS:06666</td>
<td>KY865520</td>
<td>KY865466</td>
<td>KY865552</td>
<td>Eumerus minotaurus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Rethymnon, Fotinos, 35.285762, 24.468983, 26/05/2014</td>
</tr>
<tr>
<td>TS241</td>
<td>FSUNS:6724</td>
<td>KY865521</td>
<td>KY865467</td>
<td>none</td>
<td>Eumerus minotaurus</td>
<td>E. minotaurus</td>
<td>F</td>
<td>F</td>
<td>Greece, Chania, Omalos plain, 35.322592, 23.930496, 28/05/2014</td>
</tr>
<tr>
<td>MN1</td>
<td>FSUNS:11413</td>
<td>KY865522</td>
<td>KY865468</td>
<td>KY865558</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Ano Korakiana, 39.69882, 19.789656, 24/05/2016</td>
</tr>
<tr>
<td>MN2</td>
<td>FSUNS:11415</td>
<td>KY865523</td>
<td>KY865469</td>
<td>KY865572</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Ano Korakiana, 39.69882, 19.789656, 24/05/2016</td>
</tr>
<tr>
<td>MN3</td>
<td>FSUNS:11419</td>
<td>KY865524</td>
<td>KY865470</td>
<td>KY865565</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Ano Korakiana, 39.69882, 19.789656, 24/05/2016</td>
</tr>
<tr>
<td>MN4</td>
<td>FSUNS:11458</td>
<td>KY865525</td>
<td>KY865471</td>
<td>KY865566</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Liapades, 39.673537, 19.756369, 24/05/2016</td>
</tr>
<tr>
<td>MN5</td>
<td>FSUNS:11457</td>
<td>KY865526</td>
<td>KY865472</td>
<td>KY865570</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Liapades, 39.673537, 19.756369, 24/05/2016</td>
</tr>
<tr>
<td>MN7</td>
<td>FSUNS:11461</td>
<td>KY865528</td>
<td>KY865474</td>
<td>KY865555</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>F</td>
<td>Greece, Corfu, nr Liapades, 39.673537, 19.756369, 24/05/2016</td>
</tr>
<tr>
<td>MN8</td>
<td>FSUNS:11460</td>
<td>KY865529</td>
<td>KY865475</td>
<td>KY865548</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Liapades, 39.673537, 19.756369, 24/05/2016</td>
</tr>
<tr>
<td>MN9</td>
<td>FSUNS:11448</td>
<td>KY865530</td>
<td>KY865476</td>
<td>KY865551</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Ano Korakiana, 39.69882, 19.789656, 24/05/2016</td>
</tr>
<tr>
<td>MN10</td>
<td>FSUNS:11430</td>
<td>KY865531</td>
<td>KY865477</td>
<td>KY865559</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Ano Korakiana, 39.69882, 19.789656, 24/05/2016</td>
</tr>
<tr>
<td>MN11</td>
<td>FSUNS:11459</td>
<td>KY865532</td>
<td>KY865478</td>
<td>KY865561</td>
<td>Eumerus phaeacus</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Liapades, 39.673537, 19.756369, 24/05/2016</td>
</tr>
</tbody>
</table>
Table 1 continued

<table>
<thead>
<tr>
<th>Sequence ID</th>
<th>Specimen voucher</th>
<th>5'-end fragment of COI</th>
<th>3'-end fragment of COI</th>
<th>28S</th>
<th>Species name</th>
<th>Species group</th>
<th>Species subgroup</th>
<th>Sex</th>
<th>Field data</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN12</td>
<td>FSUNS:11432</td>
<td>KY865533</td>
<td>KY865479</td>
<td>KY86555</td>
<td>Eumerus phaeacus Chronic, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Ano Korakiana, 39.69882, 19.786956, 24/05/2016</td>
</tr>
<tr>
<td>MN13</td>
<td>FSUNS:11436</td>
<td>KY865534</td>
<td>KY865480</td>
<td>KY86557</td>
<td>Eumerus phaeacus Chronic, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Ano Korakiana, 39.69882, 19.786956, 24/05/2016</td>
</tr>
<tr>
<td>MN14</td>
<td>FSUNS:11426</td>
<td>KY865535</td>
<td>KY865481</td>
<td>KY86562</td>
<td>Eumerus phaeacus Chronic, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Ano Korakiana, 39.69882, 19.786956, 24/05/2016</td>
</tr>
<tr>
<td>MN15</td>
<td>FSUNS:11437</td>
<td>KY865536</td>
<td>KY865482</td>
<td>KY86560</td>
<td>Eumerus phaeacus Chronic, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Corfu, nr Ano Korakiana, 39.69882, 19.786956, 24/05/2016</td>
</tr>
<tr>
<td>MN16</td>
<td>FSUNS:11310</td>
<td>KY865537</td>
<td>KY865483</td>
<td>KY86573</td>
<td>Eumerus crusius Grković, Vujic & Radenković, 2015</td>
<td>E. minotaurus</td>
<td>none</td>
<td>F</td>
<td>Greece, Lesbos, Neochoiri</td>
</tr>
<tr>
<td>MN18</td>
<td>FSUNS:11411</td>
<td>KY865538</td>
<td>KY865484</td>
<td>KY86556</td>
<td>Eumerus karyates Chroni, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Peloponnese, Karyes, 25km N from Sparti, 37.304145, 22.421241</td>
</tr>
<tr>
<td>MN19</td>
<td>FSUNS:11412</td>
<td>KY865540</td>
<td>KY865485</td>
<td>KY86564</td>
<td>Eumerus karyates Chroni, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>F</td>
<td>Greece, Peloponnese, Karyes, 25km N from Sparti, 37.304145, 22.421241</td>
</tr>
<tr>
<td>MN20</td>
<td>FSUNS:11572</td>
<td>KY865539</td>
<td>KY865486</td>
<td>KY86554</td>
<td>Eumerus karyates Chroni, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>F</td>
<td>Greece, Peloponnese, Karyes, 25km N from Sparti, 37.304145, 22.421241</td>
</tr>
<tr>
<td>MN21</td>
<td>FSUNS:11573</td>
<td>KY865541</td>
<td>KY865487</td>
<td>KY86557</td>
<td>Eumerus karyates Chroni, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>F</td>
<td>Greece, Peloponnese, Karyes, 25km N from Sparti, 37.304145, 22.421241</td>
</tr>
<tr>
<td>MN22</td>
<td>FSUNS:11574</td>
<td>KY865542</td>
<td>KY865488</td>
<td>KY86563</td>
<td>Eumerus karyates Chroni, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>F</td>
<td>Greece, Peloponnese, Karyes, 25km N from Sparti, 37.304145, 22.421241</td>
</tr>
<tr>
<td>MN23</td>
<td>FSUNS:11571</td>
<td>KY865543</td>
<td>KY865489</td>
<td>KY86571</td>
<td>Eumerus karyates Chroni, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Peloponnese, Karyes, 25km N from Sparti, 37.304145, 22.421241</td>
</tr>
<tr>
<td>MN24</td>
<td>FSUNS:11410</td>
<td>KY865544</td>
<td>KY865490</td>
<td>KY86568</td>
<td>Eumerus karyates Chroni, Grković & Vujić, sp. n.</td>
<td>E. minotaurus</td>
<td>E. minotaurus</td>
<td>M</td>
<td>Greece, Peloponnese, Karyes, 25km N from Sparti, 37.304145, 22.421241</td>
</tr>
<tr>
<td>TS24</td>
<td>FSUNS:08451</td>
<td>LN890909 (GB)</td>
<td>KY865445</td>
<td>KY86575</td>
<td>Merodon erivanicus Paramonov, 1925</td>
<td>Outgroup</td>
<td>none</td>
<td>M</td>
<td>Turkey, Isparta, Geledost, Yesilkoy, 42.250833, 32.351111, 29/05/2014</td>
</tr>
</tbody>
</table>

Morphological characters used in the descriptions and drawings are based on the terminology established by Thompson (1999), and those related to male genitalia follow Doczkal (1996) and Hurkmans (1993). Colour characters are described from dry-mounted specimens. Male genitalia were extracted from specimens using standard methods described in Grković et al. (2015). Figures and drawings were generated from photographs of characters taken with a Leica DFC 320 (Wetzlar, Germany) camera attached to a Leica MZ16 binocular stereomicroscope and then processed in Adobe Photoshop CS3 v10.0 (Adobe Systems, San Jose, CA, USA). An ocular micrometer attached to a stereomicroscope was used for measurements. All measurements for a given view were conducted in the same plane. The width of the
face and head were measured in line with the lower margin of the antennal sockets, in frontal view. The proportions of the antennal segments were measured from the outside. We defined the width of the vertex as the distance between the eyes at the posterior margins of the posterior ocelli. The length of the frons was measured from the eyes to the upper margin of the antennal socket. The widths of tergites 3 and 4 were measured in line with their anterior margin and the width of the abdomen across widest part. The lengths of the tergites and abdomen were measured along a median line. Abbreviations used in descriptions are: T - tergite, S - sternite, IL - interior accessory lobe of posterior surstyle lobe.

Molecular analyses

DNA amplification and sequencing

Genomic DNA extractions were performed on two to three legs from each specimen, based on the protocol of Chen et al. (2010) with slight modifications as described in Grković et al. (2015). We amplified (a) 3’ and 5’ fragments of mitochondrial gene Cytochrome c oxidase subunit I (COI), and (b) nuclear gene 28S ribosomal DNA (28S D2 rDNA: covering the D2 variable region, also referred to as the second expansion region or second divergent domain). The 28S marker was amplified for 29 out of the 52 specimens. The primers used for the PCR amplification and sequencing are listed in Table 2. PCR amplifications and purification of the PCR products were performed as described in Grković et al. (2015). DNA sequencing was conducted based on the Sanger method on an ABI 3730 DNA analyzer (Applied Biosystems, USA) at the Sequencing Service laboratory of the Finnish Institute for Molecular Medicine (http://www.fimm.fi) and by Macrogen Inc. (The Netherlands; http://www.macrogen.com/eng/).

Sequence analysis

Raw sequences were examined and proofread in BioEdit v7.2.5 (Hall, 1999). Multiple sequence alignments were implemented in MAFFT v7 by

![Figure 2. Distributions of all specimens used for the morphological, molecular and wing morphometric analyses. ■ E. minotaurus, ▲ E. karyates sp. n., ● E. phaeacus sp. n., ◆ E. crassus, ◇ E. anatolicus sp. n.](image-url)
employing the L-INS-i algorithm (see supplementary information, Data S1, S2; Katoh et al., 2005; available at http://mafft.cbrc.jp/alignment/server/index.html). Polymorphic sites, parsimony informative sites and number of haplotypes were calculated using DnaSP v5.10.01 (Librado and Rozas, 2009).

Table 2. Primers used for amplification and sequencing of the mtDNA and nDNA gene fragments.

<table>
<thead>
<tr>
<th>Primer pair</th>
<th>Primer sequence</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>3’ fragment of COI</td>
<td>C1-J-2183 (alias Jerry)</td>
<td>5’-CAACATTATTTTGTATTTTGG-3’</td>
</tr>
<tr>
<td></td>
<td>TL2-N-3014 (alias Pat)</td>
<td>5’-TCAATGCACATACTGCAATTA-3’</td>
</tr>
<tr>
<td>5’ fragment of COI</td>
<td>LCO-1490</td>
<td>5’-GGTCAACAAACTACATAAGATTTG-3’</td>
</tr>
<tr>
<td></td>
<td>HCO-2198</td>
<td>5’-TAAACTTCAGGTGACAAAAATC-3’</td>
</tr>
<tr>
<td>28s D2 rDNA</td>
<td>28S (F2)</td>
<td>5’-AGAGAGAGTTCAAGAGGCTG-3’</td>
</tr>
<tr>
<td></td>
<td>28S (3DR)</td>
<td>5’-TAGTCAACATCTTACGGTC-3’</td>
</tr>
</tbody>
</table>

Phylogenetic analyses and tree-based species delimitation

We constructed three datasets to elucidate and corroborate the phylogenetic positions of four species within the *E. minotaurus* group (*E. anatolicus* sp. n. was excluded due to unavailability of DNA sequences): (1) COI dataset, based on a concatenation of the 3’ and 5’ fragments of the COI gene (19 *Eumerus* taxa, 1238 bp); (2) 28S dataset, based on the 28S nuclear gene fragment (4 *Eumerus* taxa, 510 bp); and (3) COI subset, based on a concatenation of the 3’ and 5’ fragments of the COI gene for the *E. minotaurus* group alone (4 *Eumerus* taxa, 1238 bp) (for more details, see Table3). Representatives of other species of *Eumerus* (15 species) were only considered for the COI dataset in order to properly display phylogenetic positions and relationships of the species encompassing the *E. minotaurus* group. The phylogenetic positions and species delimitation of these 15 species were previously confirmed and discussed in Chroni et al. (2017) and Grković et al. (2017), thus we argue that the singletons used here do not jeopardize our phylogenetic inferences. The distinct morphologies of these 15 species were also accounted in species delimitation, and confirmed by the taxonomists Ante Vujić and Ana Grković.

We have inferred various phylogenetic analyses for the COI dataset as to clarify and corroborate the species topology: Maximum parsimony (MP), Maximum likelihood (ML), Neighbour joining (NJ), Bayesian inference (BI) and split network analyses. MP analyses were performed in NONA (Goloboff, 1999), spawned in WINCLADA v1.00.08 (Nixon, 2002). A heuristics search algorithm with 1000 random addition replicates (mult x 1000) was performed with holding of 100 trees per round (hold / 100), max trees set to 100 000, and applying TBR branch swapping. The ML analysis was executed in RAxML v8.0.9 (Stamatakis, 2006; Stamatakis et al., 2008) in the Cipres Science Gateway (Miller et al., 2010) with 1000 bootstrap replicates. The ML analysis was implemented under the general time-reversible (GTR) evolutionary model with a gamma distribution (GTR+G; Rodriguez et al., 1990) since it is the most accurate substitution model for datasets of approximately 50 taxa. We sought the best-fit substitution model for the COI dataset in MEGA v6.06 (Tamura et al., 2013), resulting in identification of the GTR+G+I model, as proposed by the Bayesian Information Criterion (BIC). We employed MEGA v6.06 (Tamura et al., 2013) to perform NJ analyses, but used the Tamura-Nei (TN93) nucleotide substitution model with a Gamma distribution (i.e. the second-best nucleotide substitution model proposed by BIC) since GTR model is not allowable in MEGA for NJ trees, and using 1000 bootstrap replicates. We assessed BI tree in MrBayes v3.2.6 (Husonbeek and Ronquist, 2001) in the Cipres Science Gateway (Miller et al., 2010) under the GTR+G+I model, as proposed by the BIC (Rodriguez et al., 1990). We partitioned our sequence data by codon (two partitions; positions 1st+2nd; 3rd), which as it is recommended for protein-encoding genes as the third codon position is considered to be susceptible to higher mutational rates.
(Shapiro et al., 2006; Simmons et al., 2006; Bofkin and Goldman, 2007). The settings for the Bayesian Markov chain Monte Carlo (MCMC) process included two runs of 10^8 MCMC generations ($\times 4$ chains) with a sampling frequency of 1000 generations and a relative burn-in of 10%. MCMC results were checked with TRACER v1.6 (http://tree.bio.ed.ac.uk/software/tracer/; Rambaut et al., 2014) and the tree was displayed in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/; Rambaut, 2013). ML, NJ and BI trees were merged into a split network in order to extract a united tree topology. The split network was produced in SplitsTree4 v4.14.3 (Huson and Bryant, 2006) (http://www.splitstree.org/) under the parameters SuperTree, Z-closure super-network from partial trees, and heuristic analysis (number of runs: 1000). Regarding the 28S dataset, we employed MP analysis, as described above. All phylogenetic trees were rooted on P. setosus.

In addition, Poisson tree processes (PTP) models were implemented in order to highlight putative molecular species clusters (Zhang et al., 2013) based on the best ML tree resulting from the RAxML analysis of the COI dataset. PTP analyses were conducted on the web server for PTP (available at http://species.h-its.org/ptp/).

Non-tree-based species delimitation

As to compare and confirm the indication of the E. minotaurus complex, non-tree-based species delimitation approaches were performed as well. Average pairwise Kimura 2-parameter (K2P) distances between the taxa of the COI dataset, and overall sequence divergence (under the TN93+G+I model for the COI dataset and the COI subset, and under the Tamura 3-parameter for the 28S dataset; Tamura et al., 2013) were estimated in MEGA v6.06 (Tamura et al., 2013) and proposed by BIC. We have considered a threshold of 2% sequence divergence (the barcode gap) for species delimitation (outgroups were excluded; Ratnasingham and Hebert, 2013).

Network approaches can be more effective than classical phylogenetic ones for representing intraspecific evolution (Posada and Crandall, 2001), so we assessed genealogical relationships between haplotypes of the COI subset with haplotype networks constructed using the statistical parsimony algorithm implemented in the program TCS v1.21 (Clement et al., 2000) under the 95% connection limit of parsimony (gaps treated as missing data).

Molecular divergence time estimates

We created the COI subset to estimate a time-calibrated species tree, and to reconstruct the biogeographic history of species encompassing the E. minotaurus group, i.e. E. crassus, E. karyates sp. n., E. minotaurus and E. phaeacus sp. n.

Initially, we explored temporal structure in the COI subset – necessary prerequisite for reliable estimation of substitution rates – by performing a regression of root-to-tip genetic distances in TempEst (Rambaut et al., 2016). We used the NJ tree (generated for the COI subset as described above) as the input file.

Subsequently, we estimated divergence times using BEAST v1.8.4 (Drummond et al., 2012). The input file (.xml) was created using BEAUti v1.8.4, and we integrated the BEAGLE library (Ayres et al., 2012) into BEAST runs to achieve high-performance computing. Applied prior specifications were as follows: Relaxed Uncorrelated Lognormal Clock; Birth Death process of speciation; TN93 model with G rate heterogeneity. We also partitioned the dataset by codon (two partitions: positions 1st+2nd; 3rd, Shapiro et al., 2006; Simmons et al., 2006; Bofkin and Goldman, 2007). We have considered three approaches to calibrate the molecular clock, with employment of: (a) one calibration point based on the MAT event that separated the Aegean archipelago into its western and eastern parts (10.5 ± 1.5 My, MAT analysis, Papadopoulou et al., 2010); (b) two calibration points where the root height was based on the MAT and the prior of the taxon subset E. karyates sp. n./E. minotaurus was based on the end of the MSC event that represents permanent isolation of Crete from the Greek mainland (5.3 ± 0.3 My, MAT&MSC analysis, Kasapidis et al., 2005; Kamilari et al., 2014); and (c) 2.3% pairwise evolutionary rate per million years (My), representing the standard arthropod substitution rate for mtDNA (mtDNA-rate analysis, Brower, 1994). We also created: (i) four taxon subsets based on estimates for each of the four species within the E. minotaurus group for the MAT and mtDNA-rate analyses; and (ii) two taxon subsets, one with E. crassus sequences and one with sequences of E. karyates sp. n./E. minotaurus for the MAT&MSC analysis in order to log the time to the most common ancestor tMRCA for each taxon subset and to set the prior distributions for corresponding divergence times. Three independent runs were performed with a chain length of 10^8 iterations for the MAT and MAT&MSC analyses and $5*10^8$ iterations for the mtDNA-rate analysis, sampled every 1000 generations. The program TRACER v1.6
(http://tree.bio.ed.ac.uk/software/tracer/; Rambaut et al., 2014) was employed to confirm stationarity. Independent runs were combined using Logcombiner v1.8.4 (in BEAST). The final tree with divergence time estimates was summarized with TreeAnnotator v1.8.4 (in BEAST; 10% of trees were discarded as burn-in; Maximum clade credibility tree; and Mean heights) and visualized with FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/; Rambaut, 2013).

Biogeographic analyses

To reconstruct the biogeographic history and to predict biogeographic ancestral ranges of the *E. minotaurus* group (COI subset), we conducted the statistical approach of Bayesian Binary MCMC (BBM) Method For Ancestral State (Ronquist and Huelsenbeck, 2003), conducted in RASP v3.2 (Yu et al., 2015). The MCMC chains were run by default, and the annotated trees from the BEAST analyses were used as input tree files. Four geographical areas were defined based on the clustering and distribution of the *E. minotaurus* group lineages as well as on (recorded) plant distributions (Brummitt et al., 2001; Strid, 2016): (A) Crete and Karpathos, (B) Peloponnese, (C) Balkan Peninsula, and (D) East Aegean islands (Appendix). Ancestral ranges were assumed to include from one to four areas.

Geometric morphometric analysis

Geometric morphometric analysis of wing shape was conducted on 51 specimens of the *E. minotaurus* group (see supplementary information S1). The right wing of each specimen was removed by means of a micro-scissors and was then mounted in Hoyeer’s medium on a microscopic slide. Wings have been archived and labelled with a unique code in the FSUNS collection, together with other data relevant to the specimens. High-resolution photographs of the wings were made using a Leica DFC320 video camera attached to a Leica MZ16 stereomicroscope. Ten homologous landmarks at vein intersections or terminations (that could be reliably identified) were selected using TpsDig v2.05 (Rohlf, 2006). Each wing was digitized three times to estimate the measurement error, and average landmark coordinates for each individual were used in analyses (Arnvist and Mårtensson, 1998). All geometric morphometric analyses were conducted on a dataset in which both sexes were pooled and the male dataset separately, with allometry corrected for both datasets.

Generalised least squares Procrustes superimposition was performed in MorphoJ v2.0 (Klingenberg, 2011) on the raw coordinates to minimize non-shape variations in location, scale and orientation of...
Correlation among wing shape, genetic, spatial and climatic differentiation

To test correlations between morphometric, genetic, geographic and climatic distances among species, we performed Mantel tests (Mantel, 1967) with 10,000 permutations in PaSSaGe (Rosenberg and Anderson, 2011). Morphometric distances were represented as a matrix of pairwise squared Mahalanobis distances, and genetic distances as a matrix of uncorrected p distances (as calculated in MEGA v6.06; Tamura et al., 2013). Geographic distances were calculated as the minimum distance between two species using QGIS (Quantum GIS Development Team, 2012). Climatic distances were represented as Euclidean distances of the factor scores calculated based on 19 bioclimatic variables generated for each locality from the current climate WorldClim dataset (2.5 arc-minutes resolution) (Hijmans et al., 2005).

Figure 4. A phylogenetic network of ML, NJ and BI tree results for the concatenated 3' and 5' fragments of the COI gene (COI dataset).
effect of geographic distances and climatic distances separately; and (ii) wing shape and geographic distances accounting for the genetic distances.

Results

Molecular analyses

Phylogenetic analyses: tree-based and non-tree-based species delimitation

All tree-based (MP, ML, NJ, BI, split network and PTP models, high bootstrap and probability support values; Figures 3, S2, S3, S4 and 4, respectively) and non-tree-based (K2P, TCS) species delimitation analyses of the COI dataset (1238 bp) indicated four, well-supported, clusters-species within the *E. minotaurus* group as well as three species within *E. minotaurus*, revealing the *E. minotaurus* complex. The PTP analysis returned an estimation of 22 to 26 lineages, with four within the *E. minotaurus* group. Interspecific genetic distances (K2P) for the COI dataset were found to be 0.025-0.117 (except for specimen TS241, 0.014). Sequence divergence was calculated for both the COI and 28S datasets, as well for the COI subset (Table 3). TCS analysis for the COI subset led to four independent networks, one for each species within the *E. minotaurus* group (S5).

Unlike the mitochondrial marker (COI dataset; S6), the nuclear molecular marker (28S dataset) could not distinguish evolutionary lineages. Moreover, the low sample size (4 species, 29 sequences) and the short sequence length (510 bp) meant we considered it of no benefit to further analyze the 28S dataset. Therefore, only the results of the COI dataset were sought to be used for the species delimitation within the *E. minotaurus* group.

Molecular divergence time estimates and biogeographic analyses

Our root-to-tip regression revealed relatively strong temporal structure in the COI subset, with a correlation coefficient of 0.1586 (R squared= 0.02514), allowing us to implement a molecular clock model. This analysis also indicated that the sequences EU37, EU149 (*E. crassus*) and TS240 (*E. minotaurus*) are less divergent than the rest, whereas the EU297 (*E. minotaurus*) is the most divergent. The indication of few more or less divergent sequences was not considered as the quality of those sequences was checked and confirmed.

The time-calibrated species tree and the results of the BBM analysis are both depicted in Figure 5. Due to the similar probability values and for simplicity, we only present in Figure 5 the BBM results based on the annotated tree produced from the MAT analysis. The species-tree topology is congruent with that inferred from the phylogenetic analyses. Divergence time estimates, as assessed for the MAT and MAT&MSC approaches are well-nigh consistent. According to the inferred dates, diversification of the *E. minotaurus* group dates back to the Miocene, whereas speciation within the *E. minotaurus* complex approximately dates to the MSC (Figure 5). The pairwise substitution rates obtained were 0.882% and 0.706% for the MAT and MAT&MSC analyses, respectively. Divergence times for the mtDNA-rate analysis were much lower, placing the diversification of the *E. minotaurus* group and the *E. minotaurus* complex to the Pliocene and Pleistocene, respectively. All posterior probability values per lineage exceeded 0.95 (and ranged up to 1). The substitution rates were approximately 0.80 based on codon positions 1+2, and 1.36 for codon position 3.
Stepwise discriminant analysis revealed that the first 13 PCs represented the highest overall classification percentage of investigated taxa. Canonical variates analysis conducted on these 13 PCs produced three highly significant axes (CV1: Wilks’ Lambda = 0.0165; χ² = 170.219; p < 0.01; CV2: Wilks’ Lambda = 0.1420; χ² = 80.992; p < 0.01; CV3: Wilks’ Lambda = 0.4413; χ² = 33.949; p < 0.01). CV1 clearly separated *E. crassus* from *E. phaeacus* sp. n., though *E. minotaurus* and *E. karyates* sp. n. is related with CV2 and CV3. CV2 separated *E. minotaurus* from other under study species, while CV3 showed that *E. karyates* sp. n. differs from *E. crassus*, *E. phaeacus* sp. n. and *E. minotaurus* (Figure 6). Moreover, our discriminant function analysis showed that all species pairs differed highly significantly in wing shape (p < 0.01) (S8). Importantly, 96% of specimens were correctly classified into *a priori*-defined groups, demonstrating that wing shape is a reliable character for interspecific discrimination. All specimens belonging to *E. crassus* and *E. phaeacus* sp. n. were correctly classified. One specimen of *E. minotaurus* and one of *E. karyates*

Geometric morphometric evidence

Geometric morphometric analyses of wing shape showed the same pattern for pooled sexes and for the males separately, so only results based on the pooled dataset are presented here. Measurement (digitizing) error was negligible.

Principal component analysis carried out on the Procrustes shape variables produced 16 PCs (S7). The BBM analyses from all annotated trees were congruent and suggested a total of six dispersal and three vicariant events shaped the current distribution of the *E. minotaurus* group, and that speciation events have occurred within areas as follow: A:6, B:7, C:17 and D:3. Dispersal events may have occurred between areas: A to B (Crete and Karpathos to Peloponnese), C to A (Balkan Peninsula to Crete and Karpathos) and D to C (East Aegean Islands to Balkan Peninsula).

Three possible dispersal routes are proposed for each node: I: A→BA→B→A, II: C→CA→C→A or III: D→CD→C→D (Figure 5).

Figure 5. Trees inferred with BEAST for the concatenated 3' and 5' fragments of the COI gene (COI subset) for the *E. minotaurus* group. Values on the left and above the branches are mean ages estimated according to the uncorrelated log-normal clock based on (a) MAT (in normal text), (b) MAT&MSC (in bold), and (c) 2.3% mtDNA-rate (in italics), in Mya (a/b/c). The four defined areas are presented with different colours, percentage values (on the right side of the nodes of the tree) and pie charts at nodes I, II and III: (A) Crete and Karpathos (blue), (B) Peloponnese (green), (C) Balkan Peninsula (red), (D) East Aegean Islands (grey), and (*) unknown (black) (for interpretation of the references to colour in this figure legend, the reader is asked to refer to the web version of this article).
Figure 6. Shape variability among species of the *Eumerus minotaurus* species group: A) Scatter plot of individual scores of CV1 and CV2; and B) scatter plot of individual scores of CV1 and CV3.

Figure 7. Wing shape differences among species of the *Eumerus minotaurus* group. A) Superimposed outline drawings showing differences in average wing shape for each species pair. Differences between the species were exaggerated three-fold to make them more visible; and B) UPGMA geo-phenogram constructed using the squared Mahalanobis distances of wing shape (for interpretation of the references to colour in this figure legend, the reader is asked to refer to the web version of this article).
is continuously expanding through new species description, taxonomic issues remain. The new species within the genus (Doczkal 1996; Ricarte et al., 2012; Grković et al., 2015, 2017; Markov et al., 2016; van Steenis et al., 2017; Smit et al., 2017) should be incorporated into new phylogenetic and biogeographic studies. There has only been one phylogenetic study on the genus so far (Chroni et al., 2017), which provided genetic evidence of two major monophyletic lineages and seven ‘molecular’ groups within the genus Eumerus, including an E. minotaurus group.

The present study is the first to focus on the E. minotaurus group and, by employing an integrative framework, we reveal one new species and identify the E. minotaurus cryptic species complex within the genus (Figures 8, 9). Evidence for the new species is based on morphological data, and the cryptic species complex is well supported by mtDNA sequences, discrete morphological features (antennae, male genitalia), wing morphometry, and biogeographic reconstructions. We also attempted, albeit unsuccessfully, to use a nuclear marker (never previously tried before in Eumerus) to infer phylogenetic relationships between species of the E. minotaurus group. Below, we discuss our findings and further conclude with contingent biogeographic patterns and speciation processes within the E. minotaurus group in relation to the palaeogeography of the Aegean region.

Table 4. Results of simple and partial two-tailed Mantel tests for correlation among phenetic distance (wing shape) and genetic, geographic and climatic distances (p > 0.05).

<table>
<thead>
<tr>
<th></th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Mantel test</td>
<td></td>
</tr>
<tr>
<td>wing - genetic</td>
<td>0.75</td>
</tr>
<tr>
<td>wing - geography</td>
<td>0.46</td>
</tr>
<tr>
<td>wing - climate</td>
<td>-0.58</td>
</tr>
<tr>
<td>Partial Mantel test</td>
<td></td>
</tr>
<tr>
<td>wing - genetic - holding</td>
<td></td>
</tr>
<tr>
<td>geography</td>
<td>0.79</td>
</tr>
<tr>
<td>wing - genetic - holding</td>
<td></td>
</tr>
<tr>
<td>climate</td>
<td>0.58</td>
</tr>
<tr>
<td>wing - geography holding</td>
<td></td>
</tr>
<tr>
<td>genetic</td>
<td>-0.57</td>
</tr>
</tbody>
</table>

sp. n. were misclassified as E. phaeacus sp. n. A congruent classification was obtained by the Gaussian naive Bayes classifier, through which all specimens of E. minotaurus, E. crassus and E. phaeacus sp. n. were correctly classified, and only one specimen of E. karyates sp. n. was misclassified as E. minotaurus. The same male specimen of E. karyates sp. n. was misclassified by both approaches.

Superimposed outline drawings depict the differences in mean wing shape among each species (Figure 7A). The most obvious differences are among E. crassus and species of them E. minotaurus complex. In contrast, the most subtle differences in mean shape are between E. minotaurus and E. karyates sp. n. This is consistent with the results of our UPGMA analysis based on squared Mahalanobis distances (Figure 7B).

Correlation among wing shape, genetic, spatial and climatic differentiation

Simple Mantel tests revealed that genetic, geographic and climatic distances were not correlated with wing shape distance among E. minotaurus, E. karyates sp. n., E. phaeacus sp. n. or E. crassus (Table 4). Additionally, partial Mantel test showed that genetic distance has no impact on wing shape differentiation while accounting for geographic and environmental distances, nor did geographic while accounting for genetic distance (Table 4).

Discussion

Despite its critical role in ecosystems and the high species diversity of the genus Eumerus, which
reaffirmed our morphological assignments (species predictions), clustering all these species within the same phylogenetic group with quite high bootstrap and probability values, and fully supporting the configuration of the E. minotaurus group. In addition, the employed mtDNA sequences clearly granted three lineages representing three different species within E. minotaurus, proving its suitability for resolving cryptic species. Identification of these three mitochondrial lineages led us to examine the male genitalia in more detail to seek subtle differences that we consider crucial to differentiating cryptic species. Tree topologies within the E. minotaurus group were consistent; in all cases, the E. crassus lineage was distinct from that of the E. minotaurus complex and, within the complex, E. karyates sp. n. and E. minotaurus clustered together but apart from E. phaeacus sp. n.

A combination of mitochondrial and nuclear gene fragments is often preferred to discriminate evolutionary lineages; therefore we intended to incorporate a nuclear marker dataset into our phylogenetic analyses. The 28S nuclear marker has shown genetic divergence among hoverflies (Mengual et al., 2008), and not only (e.g. Awasthi et al., 2016). However, in our study, the 28S marker resulted in low tree resolution and lineage admixture. We detected partial (six out of...
eight sequences) clustering for one species of the *E. minotaurus* complex (*E. karyates* sp. n.) in the 28S MP tree, denoting a recent speciation event, most likely not yet complete. For the remaining species of the *E. minotaurus* complex, the 28S marker proved un-informative. We had only one 28S sequence (that of *E. crassus*) outside of the *E. minotaurus* complex from which it was clearly separated, but the lack of sequences prevent us from making further conclusions about the utility of this marker for species diagnoses within *Eumerus*. We speculate that differences in lineage clustering in the trees generated by the two molecular markers are due to the faster evolutionary (mutation) rate of the mitochondrial gene fragment.

Our molecular and morphological inferences are also supported by highly significant morphological wing differentiation among species within the *E. minotaurus* complex. Although our species assignments for wing shape assessments were based on phylogenetic inferences, we consider wing shape heritability as a part of an integrative approach and a significant additive factor to our diagnosis of the cryptic species complex. Previous studies on hoverflies have shown that wing shape is a reliable predictor of interspecific differentiation, with wing geometric morphometry mainly being conducted on the genus *Merodon* (Milankov et al., 2009; Francuski et al., 2009, 2011; Ačanski et al., 2016; Šašić et al., 2016), but other examples of successful implementation of this method in hoverfly genera exist, such as in *Cheilosia* (Ludoški et al., 2008) and *Chrysotoxum* (Nedeljković et al., 2013; 2015), as well as in the hoverfly tribe Pipizini (Vujić et al., 2013).

Moreover, in recent taxonomic studies of cryptic hoverfly species, molecular data strongly supported the results of geometric morphometrics results, even though small sample size was employed (as for the current study, Vujić et al., 2013; Nedeljković et al., 2013; 2015; Ačanski et al., 2016; Šašić et al., 2016; Radenković et al., 2017). This is the first study to include wing shape analyses on the genus *Eumerus* and the results are in accordance with previous hoverfly studies. Apart from the significant differences in wing shape among species, the high percentage of correct species assignments to species by both discriminant function analysis and the Gaussian naïve Bayes classifier analyses demonstrates that wing shape is highly reliable in cryptic species delimitation.

The topology of the phenogram based on wing shape variables was congruent with the topology inferred from phylogenetic analyses. The most similar wing shape was detected between *E. minotaurus* and *E. karyates* sp. n., and *E. crassus* wing shape was distinct from the species of the *E. minotaurus* complex. Observed differences in mean wing shape of the species within the *E. minotaurus* complex were mainly associated with broadness of the proximal part of the wing. Both proximal and distal parts of the wing differed between *E. crassus* and the *E. minotaurus* complex. Due to our small sample size, it was not possible to account for sexual dimorphism. Therefore, sexual dimorphism may bias some of our conclusions about mean wing shape differences among the investigated species. Wing length and width influence insect flight ability and male species-specific courtship song (Cowling and Burnet, 1981; Stubbs and Falk, 1983; Routtu et al., 2007; Sacchi and Hardersen, 2012; Menezes et al., 2013; Outomuro et al., 2013), indicating potential natural and sexual selection on wings. The Mantel tests (both simple and partial) we conducted showed no significant correlation among wing shape and current climate, or for geographic or genetic proximity. Following the statement and results mentioned above, we assume that interactions of natural selection, adaptive processes to paleogeographic conditions, phylogenetic history, and restricted gene flow of isolated ancestral populations could explain wing shape differences among the cryptic species.

Mitochondrial dating, biogeographic history and divergence time estimates

An important issue for the mitochondrial phylogeography of hoverflies (including *Eumerus*) is the absence of a fossil record and an accurate mitochondrial substitution rate for gene fragments that could be used to calibrate the molecular clock. Here, we essayed three different analytical approaches based on the two major geological events that occurred in the Aegean Archipelago (MAT and MSC) as well as the standard mitochondrial substitution rate reported for arthropods (mtDNA-rate, Brower, 1994). The mtDNA-rate is not always feasible for all insect groups, having been shown to produce unreliable results, and hence, potential pitfalls should be taken into account (Papadopoulou et al., 2010). Indeed, we found that the divergence times generated from our mtDNA-rate analysis were rather low and inconsistent with any major geological event of the Aegean region that could explain speciation within the *E. minotaurus* group, confirming its reputation to give ‘unrealistic ages’. In contrast, the MAT and MAT&MSC divergence
time estimates were similar, with the latter approach being more in line with biogeographic events in the region. We posit that our MAT&MSC divergence times might reflect better the actual diversification events. The low estimated pairwise substitution rates arising from the MAT and MAT&MSC analyses are exceptional; low COI pairwise substitution rates have been found in other insects, such as ants (1.5%, Quek et al., 2004) and Drosophila species (1.54%, Nunes et al., 2010), suggesting that caution should be exercised if calibrating the molecular clock according to the standard arthropod substitution rate of 2.3%.

Heled and Drummond (2010) highlighted the necessity of assessing multiple samples per species when inferring speciation times and that ‘two or more sequences per species are necessary for a complete estimation of speciation times, given enough loci’. We included from 4 to 18 sequences per species in our phylogenetic analyses with samples originating from different localities (except for E. karyates sp. n. that has only been recorded in Karyes of the Peloponnese, so all specimens were from one locality). Since the tree topology obtained from BEAST was congruent to those obtained from mitochondrial phylogenetic inferences (i.e., the COI dataset) and as the estimated molecular divergence times were concordant with the geological events that occurred in the Aegean region, we claim that our estimates for speciation events in the E. minotaurus group most likely reflect reality. Certainly, more sequences/taxa (or more loci) would further assist to elucidate the phylogeography of the E. minotaurus group but, unfortunately, insect sampling and gene amplification are always challenging.

Our phylogenetic assessment of the four species within the E. minotaurus group reflects their geographic distributions, with each species occurring in a specific region and belonging to a separate geographical cluster. As the initial diversification event occurred approximately 11.08 Mya (hereinafter, all timings are based on our MAT&MSC analysis), we speculate that there was a single species during the Miocene in Ägäis, which served as the first ancestor of all species of the E. minotaurus group (as it is known today). When the MAT occurred, eastern populations split from western ones, with one population progressively dominating the eastern part of the Aegean to become E. crassus. Our biogeographic reconstructions suggest an east-to-west (from the East Aegean towards the Greek mainland and the Balkan Peninsula) species diversification of E. crassus, with dispersal and/or vicariant events, confirming the MAT scenario. In the biogeographic context, the Greek mainland was isolated from Anatolia and the East Aegean Islands at 0.18-0.14 Mya (and were most likely consolidated until the end of the Pleistocene at 0.021 Mya), and some of the Aegean Islands started to acquire their current configurations ca. 0.03-0.018 Mya and were finally shaped at 0.008 Mya (for a thorough review see Kougioumoutzis et al., 2017). We have estimated speciation of E. crassus at 0.91 Mya (mid-Pleistocene), reflecting a period of momentous geological and climatic changes in the Aegean that likely drove speciations and/or extinctions.

Another diversification event was detected at 7.6 Mya by our analyses that separated a north-western population (Balkan Peninsula) from a south-western one (Peloponnese/Crete and Karpathos); our biogeographic analyses confirmed that ‘north-to-south’ division. Distribution patterns among the Aegean Islands are far more complex than those of the Ionian Islands because of their greater numbers and greater topographic, palaeogeographic, and environmental complexity (Gillespie and Clague, 2009; Kougioumoutzis et al., 2017). However, “the fauna and flora in the Ionian Islands are expected to be more ‘harmonic’, without profound gaps in their taxonomic composition” (Gillespie and Clague, 2009), harbouring fewer endemic taxa and existing taxa being more similar to those of the adjacent mainland. Indeed, E. phaeacus sp. n. is an insular (Corfu: Ionian Archipelago, Greece) and montane species (Balkan Peninsula: Mt Olympus, Greece; and Mt Rumija, Montenegro). Speciation forces similar to those that acted on E. crassus must have also influenced speciation of E. phaeacus sp. n. (estimated divergence at 0.67 Mya).

The Messinian Salinity Crisis was another major event that occurred in the Aegean, during which Crete became isolated from the Greek mainland but maintained a land connection to the Peloponnese until 5 Mya. Due to intense tectonic phenomena, the Aegean region was fragmented and considerably altered during the Pliocene. Crete became permanently isolated from the Peloponnese and other inland areas, and a wide sea-barrier (aka the Corinthian Channel) separated the Peloponnese from mainland Greece (5-3 Mya, Dermitzakis, 1990). Later, during the Pleistocene, climatic oscillations and sea-level fluctuations led to repeated connection/disconnection cycles (eight glacial cycles; for a review see Perissoratis and Consipliatis, 2003), which altered the size and isolation of land areas (e.g. of the islands) by forming temporary land-
bridges/corridors, allowing exchange of biota between islands and the mainland. These sea-level fluctuations continued until the late Pleistocene (0.021 Ma) and into the Holocene (Dermitzakis, 1990), inducing species diversification and dispersal (Perissoratis and Conispoliatis, 2003). A diversification event occurred 5.2 Ma within the southern populations of the E. minotaurus complex that subsequently gave rise to two species: E. karyates sp. n. (Peloponnese cluster) and E. minotaurus (Crete and Karpathos cluster). We have estimated the speciation events for these latter two species to date to 0.49 Ma and 2.26 Ma, respectively. We speculate that gene flow between the Peloponnese and Crete/Karpathos populations was impeded at the end of the MSC, when the Mediterranean Sea was refilled, and that speciation was favoured when the sea level started to stabilize. It is worth mentioning that the disconnection of Crete and Karpathos Islands (5-2 Ma) did not seem to affect the distribution of E. minotaurus (the same species is recorded on both islands), and no further speciation has taken place.

Among other phylogeographic studies carried out in the Aegean that explore the driving forces of animal speciation and biogeographic patterns, Poulakakis et al. (2014) highlighted the importance of MAT for species distributions in the area. According to that study, species such as those of the E. minotaurus group can be characterized as post-MAT colonizers, describing them as “species that reached the region after the creation of the MAT, and whose diversification is due to the MSC, intense tectonism during the Pliocene and the climatic oscillations in these periods” (Poulakakis et al., 2014). Molecular clock is infrequently applied to insects groups in the Aegean, and when it does, it concerns mostly beetles (Papadopoulou et al., 2009; 2010), crickets (Allegrucci et al., 2009; 2011), termites (Luchetti et al., 2005; 2007) and sand fly (Kasap et al., 2015). Here, for the first time, we present phylogeographic and mitochondrial dating inferences about the hoverfly genus Eumerus in the Aegean, firmly supported by integrative taxonomic data, which may foster similar studies on other hoverfly genera to further elucidate the biogeographic evolution of the Aegean.

Acknowledgements

The authors would like to thank three anonymous reviewers for their valuable comments and suggestions that improved the quality of this paper. We thank John O’Brien for proof reading and making constructive suggestions on the text. Financial support for this research was provided by the Serbian Ministry of Education, Science and Technological Development (Projects OI173002 and III43002) and the Provincial Secretariat for Science and Technological Development (Project ‘Genetic resources of agro-ecosystems in Vojvodina and sustainable agriculture’), as well as the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program ‘Education and Lifelong Learning’ of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES. Investing in knowledge society through the European Social Fund. We also acknowledge the Program «Grants IKY» of the State Scholarships Foundation of Greece, in the frame of the OP «Education and Lifelong Learning» of the European Social Fund (ESF) – NSRF, 2007–2013 (contract WP2-SHORT TERMS-19348) as partial financial support for the PhD thesis of AC.

References

Arzone A. 1971. Reperti biologici su Eumerus tricolor Meigen, nocivo alle coltivazioni di Tragopogon porrifolius L. in
Hebert PD, Cywinska A, Ball SL, deWaard JR. 2003. Biological

Nixon KC. 2002. WinClada ver. 1.00.08. Published by author, Ithaca, NY.

Padial JM, Miralles A, de la Riva I, Vences M. 2010. The
Rambaut A. 2013. FigTree, http://tree.bio.ed.ac.uk/software/figtree/

Online supplementary information

S1. List of specimens used for wing geometric morphometric analysis by geographical area and species.

S2. Maximum likelihood analysis for the concatenated 3’ and 5’ fragments of the COI gene (COI dataset). Values above branches indicate bootstrap replicates (only values >50 are illustrated).

S3. Neighbor-joining analysis for the concatenated 3’ and 5’ fragments of the COI gene (COI dataset). Values in the branches indicate bootstrap replicates (only values >50 are illustrated).

S4. Bayesian analysis for the concatenated 3’ and 5’ fragments of the COI gene (COI dataset). Values indicate Bayesian probabilities.

S5. Haplotype networks constructed using the statistical parsimony algorithm for the concatenated 3’ and 5’ fragments of the COI gene (COI subset) for the E. minotaurus group.

S6. Maximum parsimony analysis of the 28S gene fragment (28S dataset). Only one tree was generated (Length 90 steps, CI=93, RI=81). Filled circles denote unique changes and open circles are non-unique changes. Bootstrap support values are illustrated above the branches.

S7. Results of Principal component analysis conducted on wing shape variables.

S8. Results of discriminant analysis conducted on wing shape variables. F values are shown above the diagonal, p values are shown below the diagonal (df = 13.35).
Appendix

Systematics

Eumerus minotaurus group

Diagnosis. Species with elongated pedicel, at least 1.5 times longer than deep. Short body pile. Metafemur moderately swollen. Ventral pile on metafemur not longer than half the depth of the femur. Abdomen black with bronze to gold tinge laterally, about two times as long as wide. S4 in males flat, with invaginated posterior margin (Figure 10K), very similar in shape in all species of the group. Posterior surstyle lobe in males genitalia simple, oval (Figure 10A-C); hardly varying in shape between species, except for E. crassus and E. niehuisi (slightly different). The group includes the following species in Europe: E. crassus (Figure 11E), E. longicornis (Figures 10B, E, M, 11F), E. niehuisi and the E. minotaurus cryptic species complex (comprising E. karyates sp. n., E. minotaurus and E. phaeacus sp. n.; hereafter named E. minotaurus complex); and in Turkey: E. anatolicus sp. n. and E. crassus.

Eumerus minotaurus cryptic species complex

Diagnosis. Dark appearance, body blackish-bronze. Eyes covered with long white scattered pilosity (Figure 11G, H), whereas eyes in E. longicornis are almost bare. Second and third antennal segment elongated, with almost the same width (Figure 11A-C), similar to E. longicornis but the ventral margin of the basoflagellomere of this latter species is linear (Figure 11F) whereas it is slightly convex in the E. minotaurus complex. White to grey, very narrow and linear pollinose maculae on tergites, often absent on T4, especially among female; these maculae are well expressed and lunulate in E. longicornis in particular, but also in other species of the E. minotaurus group. Females of the E. minotaurus complex can be easily
transversely striated. Legs black to brown with reddish
colorations between segments, covered with golden
pollinosity and moderately long white pile (Figure
11I). Metatrochanter covered in medium length pile.
Metafemur moderately swollen, ventral pile yellow to
white, as long as about half the depth of the femur.
Metatibia greatly thickened, a little narrower than
metafemur, slightly curved. Tarsi covered with short,
dense, golden pile ventrally. Plumula covered in dark
yellow pilosity. Wing with brown tinge. Costal bristles
black.

Abdomen

Length: width of abdomen is about 1.4-1.6.
Tergites black, densely punctuated, covered in short
white pilosity that turns yellow in proximal half of
T4. T1 with scarce white pollinosity laterally. T2-3
with pairs of silvery-white maculae of pollinosity,
narrow, almost straight. Maculae on T4 barely visible,
sometimes absent. Sternites light brown, covered
with bronze pollinosity and moderately long white to
yellow pile. S3 wide, on posterior margin with longer
yellow to golden pile. Pregenital segment covered
with golden pilosity.

Male genitalia. Posterior surstyle lobe large, covered
with long scattered pile (Figure 10A, D). IL covered
with short dense pilosity (Figure 10D). Hypandrium
simple (Figure 10L). Distal part of aedeagal apodeme
with processes that differ in shape in different species
of the E. minotaurus complex (Figure 10G-I).

Female. Similar to the male with normal sexual
dimorphism (Figure 11B, H, J). Frons less or
more wrinkled longitudinally, in narrower part
approximately as wide as one fourth of the width
of the head in dorsal view or twice as wide as the width
of the ocellar triangle. White pollinosity along eye
margin less or more expressed. Pollinose maculae on
T4 usually absent.

Table 5. Morphological differences between the E. minotaurus complex and E. longicornis.

<table>
<thead>
<tr>
<th>E. longicornis Loew, 1855</th>
<th>E. minotaurus complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes almost bare</td>
<td>Eyes covered with moderately long and dense pile</td>
</tr>
<tr>
<td>Ventral margin of basoflagellomere linear</td>
<td>Ventral margin of basoflagellomere slightly convex</td>
</tr>
<tr>
<td>Ventral pile of pedicel shorter than the depth of pedicel</td>
<td>Ventral pile of pedicel longer than the depth of pedicel</td>
</tr>
<tr>
<td>Ventral pile of scape distinctly longer than ventral pile of pedicel</td>
<td>Ventral pile of scape about the same length as ventral pile of pedicel</td>
</tr>
<tr>
<td>Ventral pile on femur short as the dorsal</td>
<td>Ventral pile on femur longer than the dorsal</td>
</tr>
<tr>
<td>Pollinose maculae on tergites II–IV wide, well expressed, third pair clearly oblique</td>
<td>Pollinose maculae on tergites II–IV narrow, linear, third pair often absent</td>
</tr>
</tbody>
</table>
We have resolved three cryptic species within the *E. minotaurus* complex: *E. karyates* sp. n., *E. minotaurus* and *E. phaeacus* sp. n.

Eumerus minotaurus Claussen and Lucas, 1988

Diagnosis. Differs from other species of the *E. minotaurus* complex by the shape of the distal part of the aedeagal apodeme (Figure 10G), wing morphometric characters (significant wing shape differences), and molecular data (see accession numbers in Appendix). Basoflagellomere is usually pointed (Figure 11A).

Distribution. Greece: Crete and Karpathos.

Description. Size: body length 10-11.5 mm; wing length 7-9 mm.

Male. Width of face: width of head is 0.25-0.3. Length of eye contiguity: length of frons is 0.47-0.62. Basoflagellomere usually conspicuously pointed (Figure 11A). Width of pedicel: width of basoflagellomere is about 0.8. Width of pedicel: length of pedicel is about 0.6. Thorax. Length: width of scutellum is 0.5.

Female. Width of frons: width of head is 0.24-0.27. Width of pedicel: width of basoflagellomere is about 0.94. Width of pedicel: length of pedicel is 0.5-0.8. Abdomen. Height: width ratio of T4 is 0.8. Height: width of T3 is 0.46-0.49.

Eumerus karyates Chroni, Grković and Vujić sp. n.

Diagnosis. Differs from other species of the *E. minotaurus* complex by the shape of the distal part of the aedeagal apodeme (Figure 10H), wing morphometric characters (significant wing shape differences) and molecular data (see accession numbers in Appendix). Basoflagellomere is slightly pointed, but less pronounced than in *E. minotaurus* (Figure 11C).

Distribution. Montenegro: Mt Rumija, Greece: Corfu, Mt Olympus.

Eumerus phaeacus Chroni, Grković and Vujić sp. n.

Diagnosis. Differs from other species of the *E. minotaurus* complex by the shape of the distal part of the aedeagal apodeme (Figure 10I), wing pollinosity behind the posterior ocelli, wing morphometric characters (significant wing shape differences) and molecular data (see accession numbers in Appendix). Basoflagellomere is rounded, which is quite a stable character in this species (Figure 11B).

Distribution. Montenegro: Mt Rumija, Greece: Corfu, Mt Olympus.
Description. Size: body length 10-11 mm; wing length 7-8 mm.

Male. Width of face: width of head is 0.28-0.32. Width of vertex: width of the head is 0.19-0.23. Length of eye contiguity: length of frons is 0.28-0.4. Basoflagellomere almost always rounded (Figure 11B). Width of pedicel: width of basoflagellomere is about 0.8. Width of pedicel: length of pedicel is about 0.8. Thorax. Length: width of scutellum is 0.5-0.6.

Female. Width of frons: width of head is 0.27. Width of pedicel: width of basoflagellomere is 0.8. Width of pedicel: length of pedicel is 0.6. Abdomen. Height: width of T4 is 0.7. Height: width of T3 is 0.45.

Etymology. The Phaeacians (Φαίακες, in Gr.), the ancient inhabitants of Corfu Island, were famous for their nautical skills, and renowned for their ability to travel and rapidly reach any location. We selected this name given the origin of the majority of our insect specimens (Corfu) and the wide geographic range of the species.

Taxonomic notes

Doczkal (1996) noted the morphological affinity between E. minotaurus and E. longicornis and their dissimilarity to E. niehuisi, with the latter being morphologically similar and closely related to E. crassus. The first two species can be distinguished from the latter two by their slightly shorter body pile, the pruinose supra-alar area without transverse striae, and the scutum without black pile. The pedicels of E. crassus and E. niehuisi are about 1.5 times as long as deep (Figure 11E), whereas in E. longicornis (Figure 11F) and the E. minotaurus complex (Figure 11A-C) the pedicel is about twice as long as deep.

New species for the Eumerus minotaurus group

Eumerus anatolicus Grković, Vujić and Radenković sp. n.

Diagnosis. Species belongs to the E. minotaurus group and presents the highest similarity to the E. minotaurus complex compared to other species of the E. minotaurus group, but also displays clear differences to the E. minotaurus complex.

E. anatolicus sp. n. can be distinguished from E. crassus and E. longicornis by the longer pile on the ventral metatrochanter and metatarsom, as well as by the shape of the basoflagellomere (Figure 11D) and the posterior lobe of the surstylus (Figure 10C). E. anatolicus sp. n. can be distinguished from the three cryptic species belonging to the E. minotaurus complex by patches of grey to white pollinosity on the vertical triangle anteriorly and near the posterior ocelli, as well as by distinctive pollinose maculae on T2-4. In the E. minotaurus complex, these markings are linear on T3, whereas in E. anatolicus sp. n. they are wider and lunulate. This character is also present in females. Additionally, the vertex of the new species is moderately punctuated and shiny, whereas in the E. minotaurus complex it is roughly punctuated and matte. Also, in females of the E. minotaurus complex, the frons is wrinkled and covered in white pollinosity along the eye margin apart from an interruption in front of the ocellar triangle, whereas in E. anatolicus sp. n., frons is shinier and with a continuous line of pollinosity along the eye margin, as far as the wide pollinosic patch behind the posterior ocelli. Regarding the male genitalia, they are very similar to those in the E. minotaurus complex but with a slightly larger posterior surstyle lobe and with denser pilosity (Figure 10C) that extends along almost the entire length of the ventral margin (Figure 10F); in species of the E. minotaurus complex, this pilosity is restricted to the upper part of the posterior surstyle lobe and sometimes with only a few pile lower down (Figure 10D). The inner lobe of the anterior surstylus is more oval in lateral view than in the E. minotaurus complex, covered with fine short pilosity (Figure 10C). The apical part of the aedeagal apodeme is clearly different from those in the E. minotaurus complex (Figure 10J).

Distribution. Turkey: Muğla.

Description. Size: body length 10-12 mm; wing length 7-10.5 mm.

Male. Head. Width of face: width of head is 0.30-0.33. Width of vertex: width of head is 0.22-0.24. Length of eye contiguity: length of frons is 0.40-0.47. Eye contiguity 6-10 ommatidia long. Eyes covered in long dense white pilosity, bare near posterior margins. Face, frons, vertex and occiput black with bronze sheen. Face and frons covered in very dense silvery-white pollinosity and white pile. Frons laterally often with a few long black pile mixed with black. Face convex. Vertex and occiput moderately punctuated. Pile on vertex and occiput yellow mixed with black.
Ocelli arranged in an isosceles triangle, longer than wide. Scape and pedicel brown, covered in dense yellow pile, ventrally sometimes longer than the depth of the pedicel. Pedicel elongated, approximately as long as the basoflagellomere and even longer in some specimens (Figure 11D). Width of pedicel: width of basoflagellomere is about 0.9. Width of pedicel: length of pedicel is about 0.7. Basoflagellomere is usually pointed but in some specimens it is oval with the ventral margin quite convex. Thorax. Scutum, scutellum and pleurae black to bronze, densely punctuated. Pleurae, anterior scutum and supra-alar area with fine white pollinosity. Mesonotum with two longitudinal vittae of pollinosity extending up to 4/5 of the length. Narrow median vitta present, almost as long as lateral vittae. Pile on thorax white to yellow. Scutellum roughly striated transversely. Length: width of scutellum is 0.5-0.6. Legs black, tips of femora at both sides brownish. Base of tibiae brownish. Metafemur slightly swollen, ventral pile approximately as long as half the depth of the femur. Metatibia curved in the middle. Wings with dark tinge, entirely microtrichose. Abdomen. Tergites black, densely punctuated and covered in short white pilosity that turns yellow to golden in the posterior half of T4. T2-4 with clearly visible, wide, lunulate maculae of pollinosity. Maculae on T4 narrower. Sternites brown with long white to yellow pile. S4 broad, with yellowish pile posterolaterally. Genitalia. Posterior surstyle lobe large, covered in long, dense and evenly distributed pilosity (Figure 10C). IL covered with short dense pile. Ventral margin of surstylus densely pilose, almost along entire length (Figure 10F).

Female. Similar to the male with normal sexual dimorphism. Head. Width of frons: width of head is 0.3. Frons shiny, moderately punctuated with a continuous line of pollinosity along the eye margin as far as the wide pollinose patch behind the posterior ocelli.